UI5CN CORE Machine Learning - Part 1 https://www.ui5cn.com/courses/project-core Machine Learning Algorithms can be classified into 3 types Supervised Learning, Unsupervised Learning and Reinforcement Learning. In Machine Learning we can solve 5 types of different problems: 1. Classification 2. Anomaly Detection 3. Regression 4. Clustering 5. Reinforcement Learning 1. Classification In machine learning and statistics, classification is the problem of identifying to which of a set of categories (sub-populations) a new observation belongs, on the basis of a training set of data containing observations (or instances) whose category membership is known. An example would be assigning a given email into "spam" or "non-spam" classes or assigning a diagnosis to a given patient as described by observed characteristics of the patient (gender, blood pressure, presence or absence of certain symptoms, etc.). Classification is an example of pattern recognition. 2. Anomaly Detection Three broad categories of anomaly detection techniques exist.Unsupervised anomaly detection techniques detect anomalies in an unlabeled test data set under the assumption that the majority of the instances in the data set are normal by looking for instances that seem to fit least to the remainder of the data set. Supervised anomaly detection techniques require a data set that has been labeled as "normal" and "abnormal" and involves training a classifier (the key difference to many other statistical classification problems is the inherent unbalanced nature of outlier detection). Semi-supervised anomaly detection techniques construct a model representing normal behavior from a given normal training data set, and then testing the likelihood of a test instance to be generated by the learnt model. 3. Regression Regression analysis is a set of statistical processes for estimating the relationships among variables. It includes many techniques for modeling and analyzing several variables, when the focus is on the relationship between a dependent variable and one or more independent variables (or 'predictors'). More specifically, regression analysis helps one understand how the typical value of the dependent variable (or 'criterion variable') changes when any one of the independent variables is varied, while the other independent variables are held fixed. 4.Clustering Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters). It is the main task of exploratory data mining, and a common technique for statistical data analysis, used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, bioinformatics, data compression, and computer graphics. 5. Reinforcement Learning Reinforcement learning (RL) is an area of machine learning inspired by behaviorist psychology, concerned with how software agents ought to take actions in an environment so as to maximize some notion of cumulative reward. The problem, due to its generality, is studied in many other disciplines, such as game theory, control theory, operations research, information theory, simulation-based optimization, multi-agent systems, swarm intelligence, statistics and genetic algorithms. In the operations research and control literature, reinforcement learning is called approximate dynamic programming, The approach has been studied in the theory of optimal control, though most studies are concerned with the existence of optimal solutions and their characterization, and not with learning or approximation.

Machine Learningmachine learning architecturemachine learningmachine learning algorithmsmachine learning applicationsmachine learning tutorialintroduction to machine learningmachine learning overviewmachine learning tutorial for beginnersmachine learning trainingtypes of machine learningMLmachine learning googlemachine learning introducionmachine learning with pythonwhat is machine learningmachine learning basicssap machine learning