Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners. 🔗 Learning resources: https://github.com/ayush714/ML001-Project-Sources-Code-and-Learning-Materials 💻 Code: https://github.com/ayush714/ML001-Project-Sources-Code-and-Learning-Materials ✏️ Course developed by Ayush Singh. Check out his channel: https://www.youtube.com/c/neweraa ⭐️ Course Contents ⭐️ ⌨️ (0:00:00) Course Introduction ⌨️ (0:04:34) Fundamentals of Machine Learning ⌨️ (0:25:22) Supervised Learning and Unsupervised Learning In Depth ⌨️ (0:35:39) Linear Regression ⌨️ (1:07:06) Logistic Regression ⌨️ (1:24:12) Project: House Price Predictor ⌨️ (1:45:16) Regularization ⌨️ (2:01:12) Support Vector Machines ⌨️ (2:29:55) Project: Stock Price Predictor ⌨️ (3:05:55) Principal Component Analysis ⌨️ (3:29:14) Learning Theory ⌨️ (3:47:38) Decision Trees ⌨️ (4:58:19) Ensemble Learning ⌨️ (5:53:28) Boosting, pt 1 ⌨️ (6:11:16) Boosting, pt 2 ⌨️ (6:44:10) Stacking Ensemble Learning ⌨️ (7:09:52) Unsupervised Learning, pt 1 ⌨️ (7:26:58) Unsupervised Learning, pt 2 ⌨️ (7:55:16) K-Means ⌨️ (8:20:21) Hierarchical Clustering ⌨️ (8:50:28) Project: Heart Failure Prediction ⌨️ (9:33:29) Project: Spam/Ham Detector 🎉 Thanks to our Champion and Sponsor supporters: 👾 Wong Voon jinq 👾 hexploitation 👾 Katia Moran 👾 BlckPhantom 👾 Nick Raker 👾 Otis Morgan 👾 DeezMaster 👾 AppWrite -- Learn to code for free and get a developer job: https://www.freecodecamp.org Read hundreds of articles on programming: https://freecodecamp.org/news